Face Recognition by Curvelet Based Feature Extraction
نویسندگان
چکیده
This paper proposes a new method for face recognition based on a multiresolution analysis tool called Digital Curvelet Transform. Multiresolution ideas notably the wavelet transform have been profusely employed for addressing the problem of face recognition. However, theoretical studies indicate, digital curvelet transform to be an even better method than wavelets. In this paper, the feature extraction has been done by taking the curvelet transforms of each of the original image and its quantized 4 bit and 2 bit representations. The curvelet coefficients thus obtained act as the feature set for classification. These three sets of coefficients from the three different versions of images are then used to train three Support Vector Machines. During testing, the results of the three SVMs are fused to determine the final classification. The experiments were carried out on three well known databases, viz., the Georgia Tech Face Database, AT&T "The Database of Faces" and the Essex Grimace Face Database.
منابع مشابه
Analysis of Recognition Accuracy Using Curvelet Tranform
This paper describes a comparative analysis of recognition accuracy using feature extraction algorithm. A feature extraction algorithm is introduced for face recognition, Principle Component Analysis (PCA),Linear Discriminant Analysis(LDA) , Independent Component Analysis(ICA) and Nonnegative matrix factorization (NMF) based on curvelet transform. Mostly recognition system is capable to perform...
متن کاملLocal Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition
In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients charact...
متن کاملFace Recognition using Common Vector based on Curvelet Transform
In this paper, a novel approach for expression invariant face recognition is proposed. It's implemented by common vector and the feature extraction is based on Curvelet transform, which is one of the multiscale geometric transforms and has better sparsity than the other transforms, especially for the edges. We assume the different images of the same subject as an interrelated ensemble with expr...
متن کاملColor Face Recognition Based on Curvelet Transform
In this article, a new color feature extraction algorithm and a new hybrid color space is proposed in order to further enhance the color face recognition performance. First, it is searched the best combination way of color component images of the YIQ, the YCbCr, and the HSV color spaces transformed from RGB color space. Secondly it is decomposed by applying curvelet transform to each of color c...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کامل